Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Front Immunol ; 13: 1083167, 2022.
Article in English | MEDLINE | ID: covidwho-2241017

ABSTRACT

SARS-CoV-2 vaccines are recommended pre-transplantation, however, waning immunity and evolving variants mandate booster doses. Currently there no data to inform the optimal timing of booster doses post-transplant, in patients primed pre-transplant. We investigated serial serological samples in 204 transplant recipients who received 2 or 3 SARS-CoV-2 vaccines pre-transplant. Spike protein antibody concentrations, [anti-S], were measured on the day of transplantation and following booster doses post-transplant. In infection-naïve patients, post-booster [anti-S] did not change when V3 (1st booster) was given at 116(78-150) days post-transplant, falling from 122(32-574) to 111(34-682) BAU/ml, p=0.78. Similarly, in infection-experienced patients, [anti-S] on Day-0 and post-V3 were 1090(133-3667) and 2207(650-5618) BAU/ml respectively, p=0.26. In patients remaining infection-naïve, [anti-S] increased post-V4 (as 2nd booster) when given at 226(208-295) days post-transplant, rising from 97(34-1074) to 5134(229-5680) BAU/ml, p=0.0016. Whilst in patients who had 3 vaccines pre-transplant, who received V4 (as 1st booster) at 82(49-101) days post-transplant, [anti-S] did not change, falling from 981(396-2666) to 871(242-2092) BAU/ml, p=0.62. Overall, infection pre-transplant and [anti-S] at the time of transplantation predicted post-transplant infection risk. As [Anti-S] fail to respond to SARS-CoV-2 booster vaccines given early post-transplant, passive immunity may be beneficial to protect patients during this period.


Subject(s)
COVID-19 , Transplants , Humans , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Transplant Recipients , Antibodies
2.
Wellcome Open Res ; 6: 358, 2021.
Article in English | MEDLINE | ID: covidwho-2228543

ABSTRACT

Background: Lateral flow immunoassays (LFIAs) are able to achieve affordable, large scale antibody testing and provide rapid results without the support of central laboratories. As part of the development of the REACT programme extensive evaluation of LFIA performance was undertaken with individuals following natural infection. Here we assess the performance of the selected LFIA to detect antibody responses in individuals who have received at least one dose of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. Methods: This was a prospective diagnostic accuracy study. Sampling was carried out at renal outpatient clinic and healthcare worker testing sites at Imperial College London NHS Trust. Two cohorts of patients were recruited; the first was a cohort of 108 renal transplant patients attending clinic following two doses of SARS-CoV-2 vaccine, the second cohort comprised 40 healthcare workers attending for first SARS-CoV-2 vaccination and subsequent follow up. During the participants visit, finger-prick blood samples were analysed on LFIA device, while paired venous sampling was sent for serological assessment of antibodies to the spike protein (anti-S) antibodies. Anti-S IgG was detected using the Abbott Architect SARS-CoV-2 IgG Quant II CMIA. A total of 186 paired samples were collected. The accuracy of Fortress LFIA in detecting IgG antibodies to SARS-CoV-2 compared to anti-spike protein detection on Abbott Assay Results: The LFIA had an estimated sensitivity of 92.0% (114/124; 95% confidence interval [CI] 85.7% to 96.1%) and specificity of 93.6% (58/62; 95% CI 84.3% to 98.2%) using the Abbott assay as reference standard (using the threshold for positivity of 7.10 BAU/ml) Conclusions: Fortress LFIA performs well in the detection of antibody responses for intended purpose of population level surveillance but does not meet criteria for individual testing.

3.
Nat Commun ; 13(1): 7775, 2022 12 15.
Article in English | MEDLINE | ID: covidwho-2160213

ABSTRACT

Patients with end-stage kidney disease (ESKD) are at high risk of severe COVID-19. Here, we perform longitudinal blood sampling of ESKD haemodialysis patients with COVID-19, collecting samples pre-infection, serially during infection, and after clinical recovery. Using plasma proteomics, and RNA-sequencing and flow cytometry of immune cells, we identify transcriptomic and proteomic signatures of COVID-19 severity, and find distinct temporal molecular profiles in patients with severe disease. Supervised learning reveals that the plasma proteome is a superior indicator of clinical severity than the PBMC transcriptome. We show that a decreasing trajectory of plasma LRRC15, a proposed co-receptor for SARS-CoV-2, is associated with a more severe clinical course. We observe that two months after the acute infection, patients still display dysregulated gene expression related to vascular, platelet and coagulation pathways, including PF4 (platelet factor 4), which may explain the prolonged thrombotic risk following COVID-19.


Subject(s)
COVID-19 , Convalescence , Thrombosis , Humans , Multiomics , SARS-CoV-2 , Leukocytes, Mononuclear , Proteomics , Membrane Proteins
4.
Lancet Infect Dis ; 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2086876
5.
Lancet Reg Health Eur ; 21: 100478, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2028297

ABSTRACT

Background: People with end-stage kidney disease, including people on haemodialysis, are susceptible to greater COVID-19 related morbidity and mortality. This study compares the immunogenicity and clinical effectiveness of BNT162B2 versus ChAdOx1 in haemodialysis patients. Methods: In this observational cohort study, 1021 patients were followed-up from time of vaccination until December 2021. All patients underwent weekly RT-PCR screening. Patients were assessed for nucleocapsid(anti-NP) and spike(anti-S) antibodies at timepoints after second(V2) and third(V3) vaccinations. 191 patients were investigated for T-cell responses. Vaccine effectiveness (VE) for prevention of infection, hospitalisation and mortality was evaluated using the formula VE=(1-adjustedHR)x100. Findings: 45.7% (467/1021) had evidence of prior infection. There was no difference in the proportion of infection-naïve patients who seroconverted by vaccine type, but median anti-S antibody titres were higher post-BNT162b2 compared with ChAdOx1; 462(152-1171) and 78(20-213) BAU/ml respectively, p<0.001.  Concomitant immunosuppressant use was a risk factor for non-response, OR 0.12[95% CI 0.05-0.25] p<0.001.  Post-V3 (all BNT162b2), median anti-S antibody titres remained higher in those receiving BNT162b2 versus ChAdOx1 as primary doses; 2756(187-1246) and 1250(439-2635) BAU/ml respectively, p=0.003.Anti-S antibodies waned over time. Hierarchical levels of anti-S post-V2 predicted risk of infection; patients with no/low anti-S being at highest risk. VE for preventing infection, hospitalisation and death was 53% (95% CI 6-75), 77% (95% CI 30-92) and 93% (95% CI 59-99) respectively, with no difference seen by vaccine type. Interpretation: Serum anti-S concentrations predict risk of breakthrough infection. Anti-S responses vary dependent upon clinical features, infection history and vaccine type. Monitoring of serological responses may enable individualised approaches to vaccine boosters in at risk populations. Funding: National Institute for Health Research (NIHR) Biomedical Research Centre based at Imperial College Healthcare NHS Trust and Imperial College London.

6.
EClinicalMedicine ; 53: 101642, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2028025

ABSTRACT

Background: Solid organ transplant recipients have attenuated immune responses to SARS-CoV-2 vaccines. In this study, we report on immune responses to 3rd- (V3) and 4th- (V4) doses of heterologous and homologous vaccines in a kidney transplant population. Methods: We undertook a single centre cohort study of 724 kidney transplant recipients prospectively screened for serological responses following 3 primary doses of a SARS-CoV2 vaccine. 322 patients were sampled post-V4 for anti-spike (anti-S), with 69 undergoing assessment of SARS-CoV-2 T-cell responses. All vaccine doses were received post-transplant, only mRNA vaccines were used for V3 and V4 dosing. All participants had serological testing performed post-V2 and at least once prior to their first dose of vaccine. Findings: 586/724 (80.9%) patients were infection-naïve post-V3; 141/2586 (24.1%) remained seronegative at 31 (21-51) days post-V3. Timing of vaccination in relation to transplantation, OR: 0.28 (0.15-0.54), p=0.0001; immunosuppression burden, OR: 0.22 (0.13-0.37), p<0.0001, and a diagnosis of diabetes, OR: 0.49 (0.32-0.75), p=0.001, remained independent risk factors for non-seroconversion. Seropositive patients post-V3 had greater anti-S if primed with BNT162b2 compared with ChAdOx1, p=0.001.Post-V4, 45/239 (18.8%) infection-naïve patients remained seronegative. De novo seroconversion post-V4 occurred in 15/60 (25.0%) patients. There was no difference in anti-S post-V4 by vaccine combination, p=0.50. T-cell responses were poor, with only 11/54 (20.4%) infection-naive patients having detectable T-cell responses post-V4, with no difference seen by vaccine type. Interpretation: A significant proportion of transplant recipients remain seronegative following 3- and 4- doses of SARS-CoV-2 vaccines, with poor T-cell responses, and are likely to have inadequate protection against infection. As such alternative strategies are required to provide protection to this vulnerable group. Funding: MW/PK received study support from Oxford Immunotec.

8.
Wellcome open research ; 6, 2021.
Article in English | EuropePMC | ID: covidwho-1876835

ABSTRACT

Background: Lateral flow immunoassays (LFIAs) are able to achieve affordable, large scale antibody testing and provide rapid results without the support of central laboratories. As part of the development of the REACT programme extensive evaluation of LFIA performance was undertaken with individuals following natural infection. Here we assess the performance of the selected LFIA to detect antibody responses in individuals who have received at least one dose of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. Methods: This was a prospective diagnostic accuracy study. Sampling was carried out at renal outpatient clinic and healthcare worker testing sites at Imperial College London NHS Trust. Two cohorts of patients were recruited;the first was a cohort of 108 renal transplant patients attending clinic following two doses of SARS-CoV-2 vaccine, the second cohort comprised 40 healthcare workers attending for first SARS-CoV-2 vaccination and subsequent follow up. During the participants visit, finger-prick blood samples were analysed on LFIA device, while paired venous sampling was sent for serological assessment of antibodies to the spike protein (anti-S) antibodies. Anti-S IgG was detected using the Abbott Architect SARS-CoV-2 IgG Quant II CMIA. A total of 186 paired samples were collected. The accuracy of Fortress LFIA in detecting IgG antibodies to SARS-CoV-2 compared to anti-spike protein detection on Abbott Assay Results: The LFIA had an estimated sensitivity of 92.0% (114/124;95% confidence interval [CI] 85.7% to 96.1%) and specificity of 93.6% (58/62;95% CI 84.3% to 98.2%) using the Abbott assay as reference standard (using the threshold for positivity of 7.10 BAU/ml) Conclusions: Fortress LFIA performs well in the detection of antibody responses for intended purpose of population level surveillance but does not meet criteria for individual testing.

12.
Res Pract Thromb Haemost ; 5(6): e12582, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1490913

ABSTRACT

BACKGROUND: A major clinical feature of severe coronavirus diease 2019 (COVID-19) is microvascular thrombosis linked to endothelial cell activation. Consistent with this, a number of studies have shown that patients with severe COVID-19 have highly elevated plasma levels of von Willebrand Factor (VWF) that may contribute to the prothrombotic phenotype. In the current study, we investigated the extent of endothelial activation in patients receiving hemodialysis who had either mild or severe COVID-19. METHODS: Plasma VWF, ADAMTS-13, angiopoietin-2 (Ang2), and syndecan-1 levels were determined by ELISA. The sialic acid content of VWF was investigated using a modified ELISA to measure elderberry bark lectin, specific for sialic acid residues, binding to VWF. RESULTS: Patients receiving hemodialysis with severe COVID-19 had significantly higher plasma levels of VWF and lower ADAMTS-13. VWF levels peaked and were sustained during the first 10 days after positive confirmation of infection. While Ang2 trended toward being higher in severely ill patients, this did not reach significance; however, severely ill patients had significantly higher soluble syndecan-1 levels, with high levels related to risk of death. Finally, higher VWF levels in severely ill patients were correlated with lower VWF sialic acid content. CONCLUSIONS: Severe COVID-19 in patients undergoing hemodialysis is associated with both acute and sustained activation of the endothelium, leading to alteration of the VWF/ADAMTS-13 axis. Lower VWF sialic acid content represents altered VWF processing and further confirms the disturbance caused to the endothelium in COVID-19.

14.
Lancet Infect Dis ; 21(11): 1474-1475, 2021 11.
Article in English | MEDLINE | ID: covidwho-1386928
15.
Kidney Int ; 99(6): 1470-1477, 2021 06.
Article in English | MEDLINE | ID: covidwho-1386157

ABSTRACT

Patients with end stage kidney disease receiving in-center hemodialysis (ICHD) have had high rates of SARS-CoV-2 infection. Following infection, patients receiving ICHD frequently develop circulating antibodies to SARS-CoV-2, even with asymptomatic infection. Here, we investigated the durability and functionality of the immune responses to SARS-CoV-2 infection in patients receiving ICHD. Three hundred and fifty-six such patients were longitudinally screened for SARS-CoV-2 antibodies and underwent routine PCR-testing for symptomatic and asymptomatic infection. Patients were regularly screened for nucleocapsid protein (anti-NP) and receptor binding domain (anti-RBD) antibodies, and those who became seronegative at six months were screened for SARS-CoV-2 specific T-cell responses. One hundred and twenty-nine (36.2%) patients had detectable antibody to anti-NP at time zero, of whom 127 also had detectable anti-RBD. Significantly, at six months, 71/111 (64.0%) and 99/116 (85.3%) remained anti-NP and anti-RBD seropositive, respectively. For patients who retained antibody, both anti-NP and anti-RBD levels were reduced significantly after six months. Eleven patients who were anti-NP seropositive at time zero, had no detectable antibody at six months; of whom eight were found to have SARS-CoV-2 antigen specific T cell responses. Independent of antibody status at six months, patients with baseline positive SARS-CoV-2 serology were significantly less likely to have PCR confirmed infection over the following six months. Thus, patients receiving ICHD mount durable immune responses six months post SARS-CoV-2 infection, with fewer than 3% of patients showing no evidence of humoral or cellular immunity.


Subject(s)
Antibodies, Viral/analysis , COVID-19/immunology , Kidney Failure, Chronic/therapy , Renal Dialysis/adverse effects , SARS-CoV-2/immunology , COVID-19 Testing , Female , Humans , Immunity , Male , Pandemics , Polymerase Chain Reaction , Reinfection , SARS-CoV-2/isolation & purification , Serologic Tests/methods
17.
Ann Rheum Dis ; 80(10): 1322-1329, 2021 10.
Article in English | MEDLINE | ID: covidwho-1346035

ABSTRACT

OBJECTIVE: There is an urgent need to assess the impact of immunosuppressive therapies on the immunogenicity and efficacy of SARS-CoV-2 vaccination. METHODS: Serological and T-cell ELISpot assays were used to assess the response to first-dose and second-dose SARS-CoV-2 vaccine (with either BNT162b2 mRNA or ChAdOx1 nCoV-19 vaccines) in 140 participants receiving immunosuppression for autoimmune rheumatic and glomerular diseases. RESULTS: Following first-dose vaccine, 28.6% (34/119) of infection-naïve participants seroconverted and 26.0% (13/50) had detectable T-cell responses to SARS-CoV-2. Immune responses were augmented by second-dose vaccine, increasing seroconversion and T-cell response rates to 59.3% (54/91) and 82.6% (38/46), respectively. B-cell depletion at the time of vaccination was associated with failure to seroconvert, and tacrolimus therapy was associated with diminished T-cell responses. Reassuringly, only 8.7% of infection-naïve patients had neither antibody nor T-cell responses detected following second-dose vaccine. In patients with evidence of prior SARS-CoV-2 infection (19/140), all mounted high-titre antibody responses after first-dose vaccine, regardless of immunosuppressive therapy. CONCLUSION: SARS-CoV-2 vaccines are immunogenic in patients receiving immunosuppression, when assessed by a combination of serology and cell-based assays, although the response is impaired compared with healthy individuals. B-cell depletion following rituximab impairs serological responses, but T-cell responses are preserved in this group. We suggest that repeat vaccine doses for serological non-responders should be investigated as means to induce more robust immunological response.


Subject(s)
Autoimmune Diseases/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunocompromised Host/immunology , Immunogenicity, Vaccine/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Autoimmune Diseases/drug therapy , Female , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunosuppressive Agents/immunology , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , SARS-CoV-2 , T-Lymphocytes/immunology
19.
Front Immunol ; 12: 671052, 2021.
Article in English | MEDLINE | ID: covidwho-1231338

ABSTRACT

We do not understand why non-white ethnicity and chronic kidney disease increase susceptibility to COVID-19. The lectin pathway of complement activation is a key contributor to innate immunity and inflammation. Concentrations of plasma lectin pathway proteins influence pathway activity and vary with ethnicity. We measured circulating lectin proteins in a multi-ethnic cohort of chronic kidney disease patients with and without COVID19 infection to determine if lectin pathway activation was contributing to COVID19 severity. We measured 11 lectin proteins in serial samples from a cohort of 33 patients with chronic kidney impairment and COVID19. Controls were single plasma samples from 32 patients on dialysis and 32 healthy individuals. We demonstrated multiple associations between recognition molecules and associated proteases of the lectin pathway and COVID-19, including COVID-19 severity. Some of these associations were unique to patients of Asian and White ethnicity. Our novel findings demonstrate that COVID19 infection alters the concentration of plasma lectin proteins and some of these changes were linked to ethnicity. This suggests a role for the lectin pathway in the host response to COVID-19 and suggest that variability within this pathway may contribute to ethnicity-associated differences in susceptibility to severe COVID-19.


Subject(s)
COVID-19/blood , Complement Pathway, Mannose-Binding Lectin , Lectins/blood , Renal Insufficiency, Chronic/blood , SARS-CoV-2/metabolism , Adult , Aged , Aged, 80 and over , COVID-19/ethnology , COVID-19/immunology , COVID-19/pathology , Female , Humans , Lectins/immunology , Male , Middle Aged , Renal Insufficiency, Chronic/ethnology , Renal Insufficiency, Chronic/immunology , Renal Insufficiency, Chronic/pathology , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL